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We propose an efficient modeling method for electrokinetic flows based on the smoothed
profile method (SPM) [1–4] and spectral element discretizations. The new method allows
for arbitrary differences in the electrical conductivities between the charged surfaces and
the surrounding electrolyte solution. The electrokinetic forces are included into the flow
equations so that the Poisson–Boltzmann and electric charge continuity equations are cast
into forms suitable for SPM. The method is validated by benchmark problems of electroos-
motic flow in straight channels and electrophoresis of charged cylinders. We also present
simulation results of electrophoresis of charged microtubules, and show that the simulated
electrophoretic mobility and anisotropy agree with the experimental values.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Electrokinetic flows have important applications in diverse fields such as biomedical, forensics, environmental and energy
engineering [5,6]. The electrokinetic phenomenon occurs in heterogeneous fluids associated with an electric field. Due to
various combinations of the driving force and moving phase, electrokinetic phenomena can be divided into several catego-
ries [7], among which electroosmosis and electrophoresis are two major effects. We first present a brief review of recent re-
search progress on modeling electrokinetic flows.

Electroosmosis, or electroosmotic flow (EOF), is the electrically driven motion of a fluid relative to the stationary charged
surfaces which bound it. One of the most useful applications of EOF is microfluidic pumping and flow control using electric
fields [8,9], avoiding the use of mechanical pumps or valves with moving components. There are many experimental works
which developed effective imaging techniques revealing interesting electroosmotically driven flows in various microscale
geometries and with different coating materials [10–14]. There have also been many numerical simulations on EOF recently.
Most of them are based on solving the Poisson–Boltzmann equation to include an electrokinetic force in the Navier–Stokes
equation. A numerical algorithm based on the Debye–Hückel linearization was proposed in [15] to study electrokinetic
effects in pressure-driven liquid flows. A finite-volume method was developed in [16] to simulate electroosmotic injection
at the intersection of two channels. Beskok et al. have developed a spectral element algorithm for solution of mixed electro-
osmotic/pressure-driven flows in complex two-dimensional microgeometries [17–19]. Aluru et al. proposed meshless meth-
ods and compact models to study steady electroosmotic flows in microfluidic devices and also investigated the validity of the
Poisson–Boltzmann equation in nanochannels using molecular dynamics simulations [20,21]. A lattice Boltzmann method
was applied to study the electroosmosis in microchannels investigating chaotic advection and mixing enhancement by using
heterogeneous surface potential distribution [22,23].

In contrast, electrophoresis, or electrophoretic flow (EPF) is the motion of charged particles relative to the stationary fluid.
EPF can be thought of as the mirror image of EOF; both of them are due to the formation of electric double layer (EDL), which
. All rights reserved.
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results from the interaction of the particle charges and the surrounding ionized solution. The electrophoretic motion is deter-
mined by a balance between the electric force due to the net particle charge under the EDL screening and the opposing
hydrodynamic force. By taking advantage of the differences in the electrophoretic mobilities of different particles, separation
and detection of macromolecules such as DNA, RNA, and microtubules is possible and useful in many fields like molecular
biology and forensics [24,25]. Experimental techniques to measure the particle velocity in suspensions has been quite well-
developed over recent decades, such as microelectrophoresis and electrophoretic light scattering [26]. Especially fluores-
cence microscopy can be used to image the electrophoretic motion of individual particles such as microtubules and virus
particles, which are confined in microfabricated slit-like fluidic channels [27,28]. The measured electrophoretic mobility data
are useful for estimating zeta-potential of dispersions based on established electrophoretic theories. The first complete ana-
lytical solution of the electrophoretic mobility for a sphere or a cylinder in an inertia-free flow was obtained by Henry [29],
who investigated the so-called ‘‘retardation effects”. Henry’s formula takes as input an arbitrary electrical conductivity of the
particles and the electrostatic potential distribution due to EDL. Further simplified formulations for the mobility have been
derived by invoking the Debye–Hückel linearization under the assumption of small zeta-potentials [30–32]. More recently,
O’Brien and White [33] developed perturbation methods and derived linearized equations to numerically compute the
mobility, which allows for small deformation of EDL and thus includes the relaxation effect.

In contrast to the well-developed theories and analytical approximations, few full numerical simulations have been suc-
cessful in resolving the electrophoretic flow. This is probably due to the difficulties of standard numerical methods for mov-
ing boundary problems, especially with charged complex boundaries. A finite element method, which uses a posteriori error
estimation to adaptively refine the mesh, was proposed for solving the Poisson–Boltzmann equation around charged com-
plex surfaces such as biomolecules [34,35]. This algorithm has the potential to be used in combination with an effective flow
solver to simulate the electrophoresis of complex particles, but the computational cost associated with the remeshing is
high.

More recently, a boundary-less method called the ‘‘Smoothed Profile” method (SPM), was proposed in [1,2] for solid–li-
quid two-phase flows. The key point of SPM is to update the velocity inside each particle through the integration of a
‘‘penalty” body force to ensure the rigidity of the particles. It imposes the no-slip boundary condition implicitly without
any special treatment on the solid–fluid interfaces. Therefore, a fixed computational mesh can be used without conformation
to the particle boundaries. We have previously improved this method for particulate flows by analyzing its modeling error
and improving the discretization accuracy both temporally and spatially [4]. SPM was extended to account for the electro-
hydrodynamic coupling, by integrating the modified species conservation and Navier–Stokes equations [36,3,37,38]. In par-
ticular, it was applied to calculate the electrophoretic mobilities of charged spheres and showed great potential for modeling
colloidal dispersions. However, due to the fully explicit time integration schemed used, the temporal stability and accuracy
was not quite satisfactory. It has also been used in conjunction with uniform grids and simple particle shapes. Furthermore,
the model used a uniform external electric field to calculate the electrokinetic force, which only works for particles with the
same electrical conductivity as the surrounding electrolyte solution, and thus is not practical for general poorly-conducting
materials.

The paper is organized as follows. In Section 2, we introduce the fundamental ideas of SPM. In Section 3 we propose an
efficient modeling method for electrokinetic flows, allowing for spatially varying electrical conductivities. We include elec-
trokinetic forces into the flow equations so that the Poisson–Boltzmann equation and electric charge continuity equations
are cast into SPM forms. In Section 4, we verify the modeling method by benchmark problems of electroosmotic flow in
straight channels and electrophoresis of charged cylinders. We present in the last section the simulation results of the elec-
trophoresis of charged microtubules, and show that the simulated electrophoretic mobility and anisotropy agree with the
experimental results. We conclude in Section 5.

2. Formulation

2.1. Smooth representation of particles

SPM represents each particle by a smoothed profile (or in other words an indicator/concentration function), which equals
unity in the particle domain, zero in the fluid domain, and varies smoothly between one and zero in the solid–fluid interfacial
domain. We use the following general form, which is effective for any particle shape:
/iðx; tÞ ¼
1
2

tanh
�diðx; tÞ

np

� �
þ 1

� �
; ð1Þ
where index i refers to the ith particle and diðx; tÞ is the signed distance to the ith particle surface with positive value outside
the particle and negative value inside the particle. Also, np is the local interface thickness, which can be either a constant or a
variable as follows:
np ¼ n ð2aÞ

or ¼ n exp � cjdj
n

� �
: ð2bÞ
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Fig. 1. Indicator functions for constant ðc ¼ 0Þ and variable ðc – 0Þ thickness with n=a ¼ 0:3.
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Here, n is a constant representing the interface thickness parameter and typically c ¼ 2; sharper profiles can be obtained for
larger values of c as shown in Fig. 1. We see that for variable thickness (2b), np ¼ n at the particle surface ðd ¼ 0Þ and np de-
creases exponentially away from the surface.

A smoothly spreading concentration field is achieved by summing up the concentration functions of all the Np non-over-
lapping particles:
/ðx; tÞ ¼
XNp

i¼1

/iðx; tÞ: ð3Þ
Based on this concentration field, the particle velocity field, upðx; tÞ, is constructed from the rigid motions of the Np particles:
/ðx; tÞupðx; tÞ ¼
XNp

i¼1

fViðtÞ þXiðtÞ � ½x� RiðtÞ�g/iðx; tÞ; ð4Þ
where Ri; Vi ¼ dRi
dt and Xi are spatial positions, translational velocity and angular velocity of the ith particle, respectively.

The total velocity field is then defined by a smooth combination of both the particle velocity field up and the fluid velocity
field uf :
uðx; tÞ ¼ /ðx; tÞupðx; tÞ þ ð1� /ðx; tÞÞuf ðx; tÞ: ð5Þ
We see that inside the particle domain ð/ ¼ 1Þ, we have u ¼ up, i.e., the total velocity equals the particle velocity. SPM im-
poses indirectly the no-slip constraint and the no-penetration constraint on particle surfaces, which can be shown by taking
the curl and divergence of the total velocity.

2.2. Modeling the electrical double layer (EDL) by PB equation

Most substrates (such as silica, glass, and certain polymeric materials) acquire charge when brought into contact with a
polar medium, due to ionization or ion adsorption or ion dissolution. The resulting surface charge attracts the counter-ions
(ions of opposite charge) and repels the co-ions (ions of the same charge) in the electrolyte, creating a layer of highly con-
centrated ions next to it which effectively screens the surface charge. This is known as the electrical double layer (EDL). The
outer part of the screening layer that can move under the influence of tangential stress is referred to as the diffuse layer.

The characteristic thickness of the diffuse layer is the Debye length kd, which refers to the distance from the charged sur-
face, where the electrokinetic potential energy equals the thermal energy. It is very common in the literature to use the re-

ciprocal Debye length or the so-called Debye–Hückel parameter: j ¼ 1
kd
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
e2z2

i
ni;1

��okBT

r
, where the subscript i indicates the ith

ion species, e is the elementary charge, zi is the ion algebraic valence, kB is the Boltzmann constant, T is the absolute tem-
perature, �o is the permittivity of vacuum, � is the dielectric constant of the solvent and ni;1 is the ionic concentration in the
bulk solution.

The local electric potential w in the aqueous solution is related to the charge density through the Poisson equation of
electrostatics:
r2w ¼ � qe

��0
¼ � 1

��0

X
i

ezini: ð6Þ
Here qe is the net electric charge density, ni is the local ionic concentration (number density) for the ith ion species, and the
dielectric constant �0 is assumed to be uniform. In equilibrium state, the ion density in the diffuse layer obeys the Boltzmann
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distribution [39,40]: ni ¼ ni;1 exp � eziw
kT

� �
. This is consistent with the derivations based on statistical–mechanics theories [41].

It thus yields the famous Poisson–Boltzmann equation [42,7]:
r2w ¼ � 1
��0

X
i

ezini;1 exp � eziw
kT

� �
; ð7Þ
which decouples the electric potential from ionic concentration and thus enables fast numerical simulations. The boundary
conditions for Eq. (7) can be derived from either the zeta-potential f or the surface charge density re. The former leads to a
Dirichlet-type boundary condition ðw ¼ fÞ and the latter to a Neumann-type rw � n ¼ � re

��0

	 

at the particle-solution inter-

face Cp; n is the unit normal vector of the interface. Typically, for boundary conditions the zeta-potential is used instead of
the surface potential, as it is the diffuse layer which obeys the Poisson–Boltzmann statistics and the Stern layer is usually
very thin.

The Poisson–Boltzmann equation (7) can be rewritten in a dimensionless form for a binary electrolyte solution (i.e.,
zi ¼ �1):
r2wd ¼ �qe;d ¼ b sinhðwdÞ in Kf ð8aÞ

qe ¼
��0fe

h2

� �
qe;d; ð8bÞ
where the subscript d refers to the non-dimensional quantities, e.g. the dimensionless charge density qe;d ¼ �b sinhðwdÞ.
Also, b ¼ ðjhÞ2, h is the characteristic length used to normalize the length scale, and fe ¼ kBT=ez (corresponding to
25.69 mV at 25 �C) is used to scale the electric potential as wd ¼ w=fe. We note that the equations are for the domain of
the electrolyte solution Kf , and qe refers to the charge density in the electrolyte solution. A spectral element algorithm
has been developed to solve the PB Eq. (8) with direct boundary treatment at particle/solution interfaces [17–19]; it success-
fully resolves electroosmotic/pressure-driven flows in complex geometries.

For some electrokinetic problems, e.g., moving complex charged surfaces, the required remeshing for solving the Eq. (7) is
challenging. To this end, we apply SPM to the Poisson–Boltzmann equation, aiming for an efficient modeling method for
problems with moving EDLs induced by charged surfaces or bodies in an electrolyte solution. The direct implementation
of the boundary conditions on the charged surfaces are removed, thus a simple computational mesh can be used. We modify
the non-dimensionalized Poisson–Boltzmann equation (8) by specifying the charges on the immersed particles and extend-
ing to the entire domain K:
r2wd ¼ �qedl;d ¼ ½ð1� /Þb sinhðwdÞ � qep� in K ð9aÞ

qedl ¼
��0fe

h2

� �
qedl;d; ð9bÞ
where qedl is the total charge density in the double layer with its dimensionless form qedl;d ¼ qef þ qep, and
qef ¼ �ð1� /Þb sinhðwdÞ; qep are the dimensionless charge density in the electrolyte solution and on the particles, respec-
tively. Note that / is the indicator function of Eq. (1).

We can adopt different forms of particle charge density qep due to different charge patterns:
qep ¼ cv/ ð10aÞ
¼ csr/ ð10bÞ
¼ c0s/ð1� /Þ: ð10cÞ
Here cv and cs are the prescribed dimensionless volume or surface charge density, scaled by the total dimensionless volume
Vp ¼

R
K /dxd or total surface area Sp ¼

R
Kr/dxd of the immersed particle, respectively. By recovering the dimensional equa-

tions, it is easy to show that cs ¼ h
��0fe

edp, where edp is the surface charge density.
It is easy to show from Gauss’s theorem that for symmetric shapes such as spheres and infinite circular cylinders, either

the uniform surface charge or the uniform volume charge will result in exactly the same electric field and potential outside
the particles.

As r/ is not always analytically available for all particle shapes, and errors are introduced by the numerical differenti-
ation, here we propose another way to introduce the surface charges as in Eq. (10c). We see that /ð1� /Þ has the expected
peak at the surface, and c0s need to be scaled correspondingly to have the prescribed total charge.

For simplicity, only uniform volume charged or surface charged particles are considered, i.e., all c in Eq. (10) are constant.
However, we could also adopt a variable c to simulate inhomogeneous charged particles.

2.3. Modeling the external electric field by the current continuity equation

Once an external electric field Eext is applied, the charged surface and ions in the EDL will acquire some motion under the
electric forces. Following the assumption made by Henry [29] that the applied field may be taken as simply superimposed on
the electric field due to EDL, we consider separately when EDL effect is absent, how the applied uniform electric field is
reconstructed near surfaces of insulators or with electrical conductivity different from the ionized solution. According to
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Henry [29], the electrophoresis mobility would be much different, depending on whether or not the particles have the same
electrical conductivity as the medium fluid.

The externally applied electric field Eext ¼ �rwext and potential wext are governed by the current continuity or the charge
conservation equation:
r � i ¼ �r � ðrrwextÞ ¼ �
dqext

dt
; ð11Þ
where i is the current density, r is the electrical conductivity and qext is the charge density due to the conductivity difference.
The relation used i ¼ rEext is an expression of Ohm’s law, with the assumptions of no charge convection and no ordinary
diffusion [7], which is generally satisfied in the cases we are studying in this paper.

If we assume the charge distribution (due to the conductivity difference) is in quasi-equilibrium state, the last term in Eq.
(11) vanishes, and we derive the following equation:
r � ðrrwextÞ ¼ 0; ð12Þ
where r could either be the conductivity of the fluid medium rf or the one of the immersed particles or boundaries rp. That
is, r ¼ rf HðdÞ þ rpð1� HðdÞÞ, where d is the distance to the interface and H is the Heaviside step function which is one in
fluid medium and zero in particles. If both rf and rp are constants, (12) breaks into two Laplace equations:
r2wext;f ¼ 0 in Xf ð13aÞ
r2wext;p ¼ 0 in Xp ð13bÞ
where Xf ;Xp are domains of fluid medium and particles, respectively. The boundary conditions for the applied potentials are:
rwext;f ¼ �E1 at 1 ð14aÞ
wext;f ¼ wext;p; at Cp ð14bÞ
s � ðrwext;f Þ ¼ s � ðrwext;pÞ at Cp ð14cÞ
n � ðrfrwext;f Þ ¼ n � ðrprwext;pÞ at Cp ð14dÞ
where Cp refers to the interface with conductivity jumps, E1 is the external field strength in far field, and s, n are the unit
tangential and normal vectors of the surfaces Cp, respectively.

We note that for arbitrary non-zero rp, Eq. (13) need to be solved in both domains with coupled boundary conditions
(14); this challenges the numerical solvers, as general direct methods only simulate the fluid domain. Also, the field Eext

is discontinuous with finite jumps across the interface Cp although the potential wext is continuous. This non-smooth nature
of the exact solution causes great challenges to numerical discretizations. The spectral method with truncated expansions of
polynomials suffers from the Gibbs phenomenon. Therefore, we propose a smooth approximation of the Eq. (12) as follows:
r � ðrrwextÞ ¼ r � ð½/rp þ ð1� /Þrf �rwextÞ ¼ 0 in X; ð15Þ
where rp; rf are the electrical conductivity of the particles and surrounding fluid medium, respectively, and the equation is
solved in the entire domain X. We use a smooth function / to approximate the conductivity jumps across the interfaces be-
tween particles and surrounding solution as r ¼ /rp þ ð1� /Þrf . Therefore, the boundary conditions on the particle surfaces
are avoided and we impose only the far field condition, which normally would berwext ¼ E1. This condition serves as a Neu-
mann condition to be imposed on the boundaries of the computational domain. Alternatively, if our simulation domain in-
cludes the electrodes, we have boundary conditions from the known electrode potential: wext ¼ fext , which is a Dirichlet type
boundary condition.

We apply the spectral element method to discretize Eq. (15) and to solve its weak variational form. An iterative (conju-
gate gradient) method is used to update the solution until the residual is reduced beyond a certain level (typically 10�12). As
the applied electric field and the resulting charge density have jump discontinuities in the exact solution, we use Galerkin
projections to solve the following equations:
Eext ¼ �rwext ; ð16aÞ
qext ¼ ���0r2wext: ð16bÞ
A better approach would be to adopt a discontinuous Galerkin formulation, but this requires change in the expansion bases
of our current spectral element solver.

2.4. Modeling electrohydrodynamic coupling by the Navier–Stokes equations

Providing the solutions for both the electric potential due to EDL and the externally applied electric field, we can couple
the electrokinetic effects with the hydrodynamic motion by adding an electrokinetic force. Assuming the fluid medium to be
incompressible and Newtonian with constant viscosity, the incompressible Navier–Stokes equations are used to solve for the
total velocity u in the entire domain D:
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@u
@t
þ ðu � rÞu ¼ � 1

q
rpþ mr2uþ gþ fs þ fek in X; ð17aÞ

r � u ¼ 0 in X: ð17bÞ
Here, fs is the body force density term representing the interactions between the particles and the fluid. SPM assignsR
Dt fsdt ¼ /ðup � uÞ to denote the momentum change (per unit mass at each time step) due to the presence of the rigid par-

ticles. Also, we have that fs � 1
Dt /ðup � uÞ, suggesting that SPM is similar to penalty methods [43,44], which incorporate con-

straints into the governing equations. Here 1=Dt serves as a penalty parameter; thus the smaller Dt is, the tighter the control
of the rigidity constraint is. This leads to an optimum time step size for pure hydrodynamic flow modeling, based on the
balance of the Stokes layer thickness and interface thickness, i.e. d ¼ 2:76

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðDtÞo

p
¼ 2n as documented in [4].

The last term fek is the electrokinetic force density, which includes the force both on the electrolyte solution and on the
charged particles. It can be written in the form of:
fek ¼ qedlEext þ qextEedl ð18aÞ
or ¼ qedlEext; ð18bÞ
where the second expression (18a) is a possible simplification when the second term is zero or negligible, e.g. in the elec-
troosmosis in straight channels with an external electric field parallel to the walls. We recall that qedl is the charge density
in EDL, which includes the particle charges (9b), Eedl ¼ �rw is the corresponding electric field due to EDL, and Eext ;qext are
the external applied field and corresponding charge distribution, respectively. Note that here we do not explicitly include the
forces qedlEedl and qextEext , as their effects are already included in the Poisson–Boltzmann equation and the current density
equation. More specifically, if we consider the static charges and corresponding electric field in an equilibrium EDL, the elec-
tric force qedlEedl on any ion is balanced by the force due to the concentration gradient and thus all the ions and fluid mass are
stationary i.e., u � 0. A similar argument can be made if we consider only the applied field around stationary interfaces.

For temporal discretizations of Eq. (17), we developed a stiffly-stable high-order splitting (velocity-correction) scheme [4],
in order to enhance stability and increase temporal accuracy, as follows:
us�
PJe�1

q¼0
aqun�q

Dt ¼
PJe�1

q¼0
bq½�ððu � rÞuÞn�q þ gn�q þ fn�q

ek � in D;

uss�us

Dt ¼ �rp	 inD;

r2 � c0
mDt

	 

u	 ¼ � uss

mDt inD;

c0unþ1�c0u	

Dt ¼ c0/nþ1ðunþ1
p �u	Þ

Dt �rpp inD

8>>>>>>>><
>>>>>>>>:

ð19Þ
where aq; bq; c0 are the coefficients derived for the stiffly-stable scheme of Jth
e order (Je ¼ 1, 2, or 3) (see [45]). Here us;uss;u	

are intermediate velocity fields; the pressure is split into two parts: pnþ1 ¼ p	 þ pp to have the intermediate velocity diver-
gence-free. Also, un�q and gn�q are the velocity and body force fields at previous time steps. The particle translational and
angular velocities are updated using an Adam–Bashforth scheme for Newton’s equations.

For spatial discretization of the above equations, we apply the spectral/hp element method (see [45]). This hybrid method
benefits from both finite element and spectral discretization. Hence, the use of smoothed profiles in SPM preserves the high-
order numerical accuracy of the spectral/hp element method.
3. Numerical verification

In this section, we verify the modeling method with SPM boundary treatment for several benchmark problems of elec-
trokinetic flows induced by charged particles in ionized solutions under an applied electric field. The numerical results of
electric potential and charge density are compared with analytical solutions but also with numerical results based on direct
boundary treatment.
3.1. Accuracy of SPM–PB solver

3.1.1. EDL near charged plates
The formation of EDL near a charged plate in contact with an ionized solution is of fundamental importance for electro-

osmotic flows in microchannels. We simulate the problem to verify the modeling methods with modified Poisson–Boltz-
mann equations (9) prescribing charge density on the particles.

We consider two charged parallel plates, which are separated by a distance of 2h in y-direction, while an infinite length is
assumed for the other two dimensions. The geometry and corresponding computational mesh is shown in Fig. 2(a), with two
‘‘smoothed particles” representing the two walls located at 1:0 6 jgj 6 1:2; all length scales are non–dimensionalized by h.
We use 32 hexahedral elements with a finer grid near the plates, and the polynomial order is chosen from P ¼ 6 to P ¼ 14 to
check the convergence.
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We specify the surface charge density ere by using its dimensionless form I ¼ ere
��o

kTkd, which is related to our dimension-
less parameter in Eq. (10) through I ¼ cs=jh. In order to examine the numerical accuracy based on the charge specification,
we determine the analytical zeta-potential from the Grahame equation [46]: I ¼ 2 sinh fexact

2

� �
. Here, fexact is the exact dimen-

sionless zeta-potential scaled by kT=e, which we use as the ‘‘exact” solution. The assumption made in this equation is that the
Debye length is very small compared to the particle dimensions jh ¼ h=kd 
 1.

In order to examine the numerical results in a pointwise sense, we include for comparison the exact solution of the
dimensionless potential given in [18]:
Fig. 3.
showin
wexact;d ¼ 4fexacttanh�1½tanhð1=4Þ expð�jhð1� jgjÞÞ�: ð20Þ
Here it is assumed that the potential is zero at the channel center, i.e. wdðg ¼ 0Þ ¼ 0. In order to have a fair comparison with
the analytical results of fexact and wexact;d, we use small Debye length in our numerical simulations kd=h 6 0:1. We plot the
potential profiles across the channel in Fig. 2 (right), where the potential is scaled by fexact . We see that SPM successfully re-
solves the potential variation in EDL for two sets of parameters used in our tests.

Fig. 3 presents the percentage errors in the zeta-potential jf�fexact j
fexact

� 100. The error is mainly due to the modeling error of
the smooth approximation used in (9), since the discretization error (spatial) is shown to be negligible by increasing the
polynomial order beyond P ¼ 9. The left plot shows that for a fixed Debye length, the error decreases with smaller interface
thickness parameter n. It also shows that for a particular interface thickness used, the error goes up if we increase jh and
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reduce the Debye length. In order to examine the error dependence on the ratio of interface thickness to Debye length jn, we
replot the same data in Fig. 3(b). The agreement in all the results for different Debye length indicates that the error is only
dependent on the ratio jn. This verifies that a better resolution of the double layer would be achieved if we use a smaller
ratio jn. In order to have a sufficiently good representation of the double layer with a characteristic thickness j�1, we need
to use a relatively smaller SPM interface thickness. Recall that the effective interface thickness is scaled as le ¼ 2:07n (see [4]),
so for adequate resolution, we propose that 2:07n < kd, i.e. jn < 0:483. This is verified by our numerical results, which show
that the error is less than 6.5% if jn < 0:5.
3.1.2. EDL around an infinitely long charged circular cylinder
Next, we consider a charged circular cylinder immersed in an electrolyte solution. The radius of the cylinder is

a ¼ 11:0 nm. We choose the scaling factor for length to be h ¼ 1 nm and thus all the lengths in the rest of this section are
dimensionless. The simulation domain is chosen to be ½�176;176� � ½�176;176� � ½0;10�, with a cylinder of radius a ¼ 11
placed at the origin and its axis aligned with the z-axis. Note that a 3D simulation with a small spanwise dimension is used
to study the 2D problem by a single layer of elements with periodicity imposed in the z-direction. For spatial discretization of
SPM-PB Eq. (9), we use 1156 nonuniform hexahedral elements with polynomial order P ¼ 5 or P ¼ 7.

From the analytical approximation of Ohshima [47] for the surface charge density/surface potential relationship for a cyl-
inder, we can obtain the exact zeta-potential fexact , given the charge on the cylinder. The numerical errors of zeta-potentials
are calculated and listed in Table 1 for a given dimensionless surface charge density I ¼ 1:47 with ja ¼ 1. The results show
that the error of the zeta-potential is less than 1% for all the interface thickness included, i.e., n=a 6 0:1.

The Debye–Hückel approximate solution for a cylinder with low zeta-potential is used as a reference to compare with the
numerical results:
Table 1
Electric

n=a

0.01
0.02
0.03
0.05
0.1
wDH;cyl ¼ fexact
K0ðjrÞ
K0ðjaÞ ; ð21Þ
where K0 is the zero order modified Bessel function of the second kind. Fig. 4 shows profiles of the dimensionless potential wd

along the radial distance to the cylinder center r. Here, we prescribe the total charge and Debye length as I ¼ 2:06;ja ¼ 11
and investigate the effects of different particle charge patterns and smooth indicator functions. We see that the three sets of
square symbols agree very well outside the cylinder and they verify the equivalence of the three different implementations
of particle charge distribution in Eq. (10). Fig. 4 also shows significant improvement by decreasing the interface thickness
parameter n, or by using a variable thickness np in Eq. (2b).

Percentage errors in zeta-potential jf�fexact j
fexact

� 100
	 


for various parameters are plotted in Fig. 5. Fig. 5(a) shows that for the
case of I ¼ 1:47;ja ¼ 1 and hence fexact ¼ 1 (indicated by big symbols) the numerical error in f is less than 1% for all the val-
ues of the interface thickness such that n=a 6 0:1.

The error increases if a higher charge density is imposed as I ¼ 22:64;ja ¼ 1 and correspondingly fexact ¼ 6:08, which is
shown by the small hollow squares. However, we are able to reduce the error by using a variable interface thickness np as in
Eq. (2b); the resulting error is less than 1.5% as long as n=a 6 0:1, as shown by the small hollow circles. Similarly, we have
greater numerical error when a smaller Debye length is presented ja ¼ 11, corresponding to the small filled symbols in
Fig. 5(a). For such a small Debye length kd=a ¼ 0:09, we need to use a sharper interface representation, either by reducing
n or by using a variable np. We expect that in order to resolve the diffuse layer with a thickness scaled as kd, the effective
smooth interface thickness needs to be bounded by the Debye length as le ¼ 2:07n < kd. Our numerical results (filled squares)
verify this statement by showing the error to be less than 7% if the above condition is satisfied; we note that this critical error
is similar to the one obtained in the planar EDL simulations in Section 3.1.1. Furthermore, we are able to control the error to
be within 2.5% if we use a variable interface thickness np with n=a 6 0:05, as shown by filled circles in Fig. 5(a).

Fig. 5(b) demonstrates the error dependence on the reduced radius ja. It shows that for a fixed interface thickness n, the
error grows with increasing ja and hence decreasing Debye length kd. The square symbols again confirm that the error is
bounded by 6 7%, if we resolve the diffuse layer adequately by le ¼ 2:07n < kd. Again, we improve the numerical accuracy
by using a variable np, which is due to the resulting smaller effective interface thickness. It is indicated that no significant
difference is caused by using different charge patterns, as either surface charge cs0 or volume charge cv .
potential of an infinitely long cylinder: dimensionless potential at the surface and the center of the cylinder with I ¼ 1:47;ja ¼ 1; fexact ¼ 1.

f wcenter error ¼ jf�fexact j
fexact

(%)

0.999218 0.999890 0.0782
0.999675 0.999680 0.0325
0.999298 0.999299 0.0702
0.998151 0.998151 0.1849
0.993016 0.993016 0.6984
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3.2. Accuracy of SPM current continuity solver

Next, we investigate the accuracy of the SPM solver of current continuity Eq. (15) by solving for the applied external elec-
tric field, which is distorted around poorly-conducting particles in an electrolyte solution with high electrical conductivity.

3.2.1. Applied field around a cylinder
We examine the accuracy of the SPM current continuity solver (15) for the applied electric field around an infinitely long

circular cylinder. Same as the simulation setup for cylindrical EDL problems, a cylinder of radius a ¼ 11 is aligned with z-axis,
and a computational domain of ½�176;176� � ½�176;176� � ½0;10� is used. The same spatial discretization is used, i.e. with
1156 nonuniform rectilinear (hexahedral) elements and polynomial order P ¼ 7. Also, periodicity is imposed in the spanwise
z-direction, but here we apply Neumann BCs for the other boundaries of the domain, i.e. @wext

n ¼ �E1 � n. The external electric
field is uniform in the far field, i.e. E1 ¼ ð4000;0;0Þ V=m.

For comparison, we provide the exact solutions of the applied field and potential as follows:
wext;out ¼ �E1 1þ rf � rp

rf þ rp
� a2

ðx2 þ y2 þ z2Þ

� �
x; ð22aÞ

wext;in ¼ �E1 1þ rf � rp

rf þ rp

� �
x: ð22bÞ
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The exact electric field Eext;out and Eext;in is obtained correspondingly. These exact solutions can be applied at the domain
boundaries as Dirichlet BCs; the resulting numerical solution is compared with the Neumann BC implementation to check
the finite-domain effect.

We also include for comparison the SPM results using a limiting step function / ¼ H ðn ¼ 0Þ in Eq. (15), against the gen-
eral SPM solution using a smooth / ðn – 0Þ. So a curvilinear mesh conforming to the particle surface is employed for spectral
element discretization, to avoid the Gibbs phenomenon due to the polynomial expansion in each spectral element. A total of
580 hexahedral elements with polynomial degree P ¼ 9 are used for both cases: n ¼ 0 and n – 0. The elemental mesh is
shown in Fig. 6(b), with a comparison against the rectilinear mesh used for general smooth / as in Fig. 6(a). We see that
the results for the applied field by using these two different meshes are very similar.

Next we present near-field profiles of the applied electric potential in Fig. 7. The filled symbols in the figure show excel-
lent agreement between the SPM results with n ¼ 0 and the exact solution for all the conductivity ratios rp=rf included.
However, note that due to the body-conforming mesh required, this model is not generally applicable, especially for complex
boundaries or moving particles. The hollow circles corresponding to n 6 0 show that the error grows with decreasing ratio
rp=rf ; while the outer field is resolved very accurately, worse accuracy inside the particle is observed. For the small ratio of
rp=rf ¼ 0:001, a small smooth interface thickness is required to resolve the interfacial field, e.g., n=a ¼ 0:01 leads to errors
under L1 < 3%. Also, we note that the difference between using either rectilinear or curvilinear mesh is small, as shown by
the small hollow symbols with identical rp=rf ¼ 0:1; n=a ¼ 0:043. This indicates that the results are mesh independent, and
it suggests the use of simple rectilinear mesh regardless of the shape of the particles.

Fig. 8 presents numerical solutions of the applied electric field near the cylinder surface, with a small conductivity ratio
rp=rf ¼ 0:001. SPM results with various interface thickness np are compared against the exact solution and numerical solu-
tion with limiting n ¼ 0. The agreement is very good for the outer field, but is worse inside the particle. By using a thin SPM
interface of variable np with n=a ¼ 0:043 and c ¼ 5 in Eq. (2), the electric field at the center of the cylinder has a small error
<2%, although some oscillations are present near the surface due to low resolution.

3.3. Accuracy of SPM electrohydrodynamic solver

In this section, we simulate the electrokinetic flows around simple particle shapes to investigate the accuracy of our SPM
electrohydrodynamic solver (17).

3.3.1. Electroosmosis in a microchannel
We first consider the problem of EOF in a two-dimensional microchannel under the influence of an applied electric field,

which is uniform and parallel to the channel walls. Since there is no distortion of the applied field due to the simple geom-
etry, the electrokinetic force consists of only one term (Eq. (18a)) and thus the error from the current density solver is not
included in the numerical results. The same geometry and computational mesh are used as for the planar EDL problem, see
Fig. 2(a). Here we specify the non-dimensionalization factor h ¼ 0:5� 10�6 m for a channel of one micron wide. The other
physical parameters are: the fluid density q ¼ 999:9 kg=m3, the dielectric constant ��o ¼ 6:95� 10�10 C2=J m, the dynamic
viscosity m ¼ 0:889� 10�3 Pa s, the temperature T ¼ 25 �C, and the external electric field E1 ¼ ð4000 V=m;0;0Þ.

The analytical solution of the electroosmotic velocity is provided by Dutta [18] for zero pressure gradient and given the
Stokes assumption:
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ud
exactðgÞ ¼ 1�

wexact;d

fexact
; ð23Þ
where fexact;wexact;d can be obtained from the Grahame equation [46] and Eq. (20) with the prescribed (dimensionless) charge
density on the channel walls. Here, the velocity is scaled by the Helmholtz–Smoluchowski electroosmotic velocity
uHS ¼ �fexact

��oE1
l , which is the velocity at the center of the channel assuming jh
 1 and wcenter ¼ 0. We use this ‘‘exact” solu-

tion to verify our numerical results.
Fig. 9 shows typical velocity profiles across the channel. Note that we use the numerical solution of the electric potential

and charge density in EDL with specified charge density I ¼ 0:741 and thickness ratio jn ¼ 0:1 as in Fig. 2. We see that SPM
successfully resolves the electroosmotic motion and shows that the velocity profile is more uniform for a smaller Debye
length, i.e. larger jh. The figure also indicates that the numerical accuracy depends on the time step size used to iterate
to a steady state.
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In order to examine more closely this error dependence, we plot in Fig. 10 the percentage error of the center velocity
uðg ¼ 0Þ compared to the Helmholtz–Smoluchowski results uHS, i.e. juðg¼0Þ�uHS j

uHS
� 100. Again, we interpret the error as the

modeling error of SPM, provided that both the temporal and spatial discretization errors are negligible. Note that this mod-
eling error consists of three parts, i.e. the first one is due to the representation of rigid bodies by a penalty force in NS Eq. (17),
which we have already quantified in [4]; the second one comes from the SPM–PB solver (9), which depends on jn as we
showed in Section 3.1; the last part is attributed to the modeling error from the electrokinetic force constitution, which uses
a smooth approximation of the EDL charges both on the particle and in the solution (9b).

Fig. 10 shows by the big symbols the error of velocity when we use the numerical solutions of EDL potential and charge
from the SPM–PB solver (9). The error is very small (<1%) for the small Debye length kd=h ¼ 0:01 for all time steps included,
as shown by the big circles. Particularly, we note that the minimum error (around 0.43%) is consistant with the zeta-poten-
tial error from the SPM–PB solver, as shown by the dashed line, which is about 0.4% for both cases with different Debye
lengths but the same thickness ratio. For a bigger Debye length kd=h ¼ 0:1 as presented by the big squares, the error goes
up, which may be partially due to the worse accuracy of the ‘‘exact” solutions for the zeta-potential and Helmholtz–Smolu-
chowski velocity, with the assumption of infinitesimally small Debye length. Furthermore, we note that in contrast to the
non-monotonic error behavior of the pure hydrodynamic solver in [4], the modeling error of the electrokinetic solver is more
like a monotonic function, which reaches a plateau beyond certain time step size.

In order to decouple the error of the SPM–NS solver from the SPM–PB solver, we show in Fig. 10 by the small symbols the
velocity results when the exact solution of EDL potential (20) is used to calculate the charge density (9b) and thus the elec-
trokinetic force. We see that the error dependence is non-monotonic, just as the error behavior from the hydrodynamic sol-
ver. However, the optimum time step is much bigger than the one from our previous analysis in [4]. An explanation can be
put forth by a similar argument as in [4]. A smaller time step would have a tighter penalty control leading to better accuracy.
However, a smaller time step also leads to a thinner Stokes diffusive layer d ¼ 2:76

ffiffiffiffiffiffiffiffi
mdt
p

which is induced by the momentum
impulse when imposing the rigidity constraint. If this thin Stokes layer is not resolved by the SPM interface le ¼ 2:07n, it will
result in a larger error. Similarly, this Stokes layer need to be thicker than the electric diffuse layer which has a characteristic
length of kd, i.e. d > kd. So we conclude that the optimum time step comes from the balance of the Stokes diffusive thickness d
and the larger of the two: effective SPM interface thickness le ¼ 2:07n and Debye length kd. Our numerical results confirm
this statement in Fig. 10(b), where dtkd

is the optimum time step expected from d ¼ kd (provided here le < kd). In fact, we
can define an ‘‘effective” thickness of the electric diffuse layer ke by matching the numerical optimum time step to the rela-
tionship d ¼ ke; our numerical data suggest that ke ¼ 1:25kd for this particular problem. We note that at such a distance away
from the channel wall, the dimensionless potential drops to a value of wexact=fexact ¼ 0:25 according to Eq. (20). Hence, in gen-
eral simulations with approximately planar surfaces we can use either of the two above conditions to obtain a good estimate
of the optimum time step that minimizes modeling errors.

Furthermore, in Fig. 10 by comparing the results between the one using the numerical solutions of the SPM–PB solver and
the one with the exact potential solution, we find that beyond certain time step size, the coupled electrokinetic solver leads
to a ‘‘fortuitous” cancellation in the errors from SPM–PB and SPM–NS solutions, and this results in a plateau. Hence, for stea-
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dy states solutions obtained through our time-marching schemes very large time steps can be used for greater efficiency and
better accuracy. For time-dependent simulations, however, the SPM-induced error has to be balanced with the temporal er-
ror for time-integration and this will give the optimum time step.
3.3.2. Electrophoretic mobility of a charged infinite cylinder in a transverse or a parallel electric field
Provided with the numerical solutions of the electric potential and field for both the EDL and the applied electric field in

the presence of a particle, we can now verify the SPM electrohydrodynamic solver (17) by studying electrophoretic mobility.
First, we study the problem of the electrophoretic flow around a charged infinite cylinder and in the next section we validate
the new method against recent experiments on the electrophoretic mobility and anisotropy of microtubules.

We use the same computational configuration as in the EDL and the applied field simulations for a cylinder with a ¼ 11.
The domain ½�176;176� � ½�176;176� � ½0;10� is discretized using 1156 nonuniform hexahedral elements and polynomial
order P ¼ 7. Also, periodicity is imposed in the spanwise z-direction.

We present comparisons with Henry’s exact solution [29] for the electrophoretic velocity ðVp;HenryÞ of a cylinder in a trans-
verse field, which was derived from the Stokes equation with Oseen’s correction. The analytical expressions take as input an
arbitrary conductivity ratio rp=rf and the electric potential solution due to EDL. Here we obtain the ‘‘exact” zeta-potential
fexact from the potential-charge relationship expression in [47], and use the Debye–Hückel approximation (21) for the ‘‘exact”
potential field. It is assumed that the zeta-potential is small and thus linearization of the Poisson–Boltzmann equation is pos-
sible. The ‘‘exact” solution for the mobility with a parallel orientation is given by Smoluchowksi’s formula: Vpk ¼ uHS ¼
E1��ofg, where small Debye length is assumed ja
 1. These analytical results are also used as the Dirichlet BC on the
boundaries of the computational domain to alleviate the finite-domain effect.

We prescribe the dimensionless charge on the cylinder ðI ¼ 2:06Þ with a reduced radius ja ¼ 11 and the undistorted
external electric field E1 ¼ ð4000 V=m;0;0Þ. For the small ratio of rp=rf ¼ 0:001, Henry’s solution indicates that
Vp? ¼ 1:028e� 4 for a cylinder perpendicularly oriented to the applied field and Vpk ¼ 1:250e� 4 for the parallel orienta-
tion; hence the anisotropy is Vp?=Vpk ¼ 0:822. However, if rp=rf ¼ 1 and thus the external field is uniform, the transverse
mobility and hence the anisotropy drops significantly, i.e. Vp? ¼ 6:249e� 5 and Vp?=Vpk ¼ 0:5. Note that this anisotropy is
exactly the same as that of an infinite cylinder in pure hydrodynamic flow.

Fig. 11 presents profiles of the streamwise velocity scaled by the Smoluchowksi velocity uHS for a cylinder with a perpen-
dicular orientation. All SPM results are using an indicator function of variable np with n=a ¼ 0:43; c ¼ 2 in Eq. (2b). The figure
shows that SPM successfully resolves the electrophoretic flow features; it verifies that the mobility decreases with increasing
conductivity ratio rp=rf .

Furthermore, Fig. 11 shows that the volume charge implementation cv results in an overshoot of the particle velocity,
while the surface charge pattern c0s always leads to an undershoot. Since these two charge patterns have been verified to
equivalently resolve the cylindrical EDL potential, the difference in the mobility comes from the inadequate resolution of
the applied field near the interfaces, which results in an underestimation of the driving electric force for the surface charge.

We also include for comparison in Fig. 11 the numerical results for a pure hydrodynamic motion of a cylinder in a periodic
box. The external non-electric force applied on the cylinder is set to be the same value as the electric force based on the total
charge on the cylinder, i.e. Fx ¼ QpE1 ¼ 1:015� 10�13 N. A negative uniform pressure gradient is applied on the fluid to en-
sure the zero net flux out of the domain. The velocity shown is scaled by the particle velocity Vp ¼ 1:53� 10�3, which is an
order of magnitude larger than the typical electrophoretic velocity scale uHS. The figure also shows that the electrophoretic
motion has a much shorter disturbance length in the surrounding fluid, when compared to the pure hydrodynamic motion.
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This is due to the opposite electric force on the surrounding fluid via the counter-ions, which is termed as the retardation
effect.

In Fig. 12, the percentage error of the electrophoretic velocity jVp�Vp;Henry j
Vp;Henry

� 100
	 


is plotted versus the time step size used in
the NS solver (17). As comparisions are made against Henry’s solution for an infinite domain, we check the finite-domain
effect by using an alternative mesh for a smaller domain, i.e. ½�114;114� � ½�114;114� � ½0;10� with 1024 elements and
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7th polynomial order. The figure indicates that increasing the size of the simulation domain leads to a smaller error, as
shown by the circle symbols. It is also verified by the first two sets of small symbols that including both force components
(Eq. (18)) leads to better accuracy.

Furthermore, comparison between the big symbols in Fig. 12 shows that by increasing the conductivity ratio to
rp=rf ¼ 1 (hence E ¼ Einf ) and thus excluding the error from the current density solver, the error is reduced for most
values of time steps, but it is still of a comparable scale. This suggests that the error comes mainly from the PB solver
and the NS solver; we recall that the error in the zeta-potential is around 2% for the parameters used. Meanwhile, for a
larger Debye length ja ¼ 1, the error in the electrophoretic velocity is below 2% for all the time steps involved, as
shown by the filled squares. This is due to the better accuracy in the PB solution, since the error in the zeta-potential
is as small as 0.3%. We also note that the error tends to form a plateau when the time step size goes beyond certain
value, which is very similar to the error behavior in the electroosmotic flow problem. This again verifies that the cou-
pling of the PB solution with the NS solution leads to a cancellation in the modeling error and thus tends to favor lar-
ger time steps.
4. Simulations: electrophoretic flows of microtubules

Microtubules have very complex structure. According to the results by an axial projection of the electron-density map
[27,48], a single microtubule can be modeled as 13 protofilaments around a thin cylindrical shell, with an inner radius of
ai ¼ 8:4 nm and an outer radius of ao ¼ 9:5 nm. Each protofilament is a half-ellipsoid with radius aa ¼ 2:3 nm and
ab ¼ 3:0 nm. Due to this complexity in geometry, numerical simulations of the electrokinetic flow around microtubules with
standard computational methods have not been reported before. Our SPM electrohydrodynamic solver is a good candidate
for such a problem as it removes the difficulty on applying the boundary conditions for complex shapes.

We simulate the electrophoretic flow of an individual microtubule and aim to assess agreement with the experimental
results in [27]. In order to examine how the surface roughness of microtubules affects the EDL, the applied field and thus
the electrophoretic motion, we include for comparison the simulation results for a circular cylinder with a similar ‘‘effective”
radius.
4.1. EDL of microtubules

According to [27], the Debye length is around kd ¼ 0:7 nm and the surface charge density is about edp ¼ �36:7�
10�3 C=m2, corresponding to the dimensionless charge density I ¼ 1:39. Thus, we set the corresponding charge density coef-
ficient in Eq. (10) to be cs ¼ 1:992, and cv ; c0s are calculated correspondingly with fixed total charge. Note that although it is
normally assumed that the microtubules are uniformly surface charged, the real charge distribution is uncertain. Therefore,
we will use and examine both uniform surface charge and uniform volume charge patterns in our SPM–PB solver of Eq. (9).

The simulation domain is ½�176;176� � ½�176;176� � ½0;10�, with periodicity imposed in all directions. Note that the scal-
ing factor for length is h ¼ 1 nm and thus all the length scales in the section are dimensionless. We use 1156 nonuniform
hexahedral elements with polynomial order P ¼ 7 for spatial discretization with spectral element method. This mesh is used
to simulate the EDL problem for a microtubule or a cylinder which is aligned with the z-axis. Different shapes are repre-
sented by different smooth indicator functions with analytical expressions of the distance to the surface. The interface thick-
ness parameter is set to n=a ¼ 0:02 for a good representation of the shapes by SPM. For comparisons with a microtubule, the
cylinder adopts the same inner radius ai ¼ 8:4 and an outer radius of a ¼ 11:0, which is chosen to match the average outer
radius of the microtubule a ¼ ao þ ab=2.

To study the effect of hollowness in EDL potential variation, we begin with solid cylinders and ‘‘solid” microtubules and
compare with the hollow structures. In Figs. 13 and 14 we plot the dimensionless electric potential contours in EDL around a
microtubule with comparisons to a cylinder. We also present the value of the potential for typical spatial points. Here, wsurface

refers to surface points, wcenter to the center, wsurface out to the outer surface of cylinder (11,0,0), wsurface out;f to the furthest outer
surface point on microtubule (12.5,0,0), wsurface out;n to the nearest outer surface point on microtubule (�9.5,0,0), and wsurface in

to the inner surface (8.4,0,0). Figs. 13 and 14 show that with surface charges, in contrast to the uniformity of the potential
present in a cylindrical particle, the potential on the surface and inside a microtubule has big variations. This is due to the
irregularity and asymmetry of the microtubule geometry. Although the surface charge density of a microtubule is assumed
to be a constant, the charge on the surface near the protofilaments joints is higher than the rest of the surface; the relative
difference in the potential between two typical surface points is as high as wsurface;out;n�wsurface;out;f

wsurface;out;f
¼ 54%. It is indicated in Fig. 14

that the hollowness does not influence much the potential distribution outside the cylinder or the microtubule, with a dif-
ference less than 10% in the surface potential when compared to the solid structures.
4.2. Applied electric field around microtubules

We apply the SPM current continuity solver (15) to solve for the applied external electric field around poorly-conducting
microtubules in an electrolyte solution. Comparisons are made against the numerical results for an infinitely long hollow
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circular cylinder with the same conductivity and effective radius. The same simulation domain and spatial discretization are
used as for the EDL problem around a microtubule.

Fig. 15 shows that the electric field inside a hollow cylinder is much stronger than that inside a solid structure, which is
Ed

ext;x ¼ Eext;x=E1 ¼ 2 by the analytical solution (22b). A microtubule has a similar magnitude in the electric field as a hollow
cylinder, but the field is distorted to a much greater extent due to the undulated surface geometry, as shown in Fig. 15(b). In
particular, we note that the resulting field for a microtubule loses its symmetry in x-direction as expected from the asym-
metric geometry; this suggests that the problem is orientation dependent.

4.3. Electrophoretic flows of microtubules

We apply the electrohydrodynamic solver (17) to study the electrophoretic motion of cylinders and microtubules, which
are oriented either parallel or perpendicular to the external applied field. Typical numerical results of the electrophoretic
velocity and anisotropy for various particles are listed in Table 2. Comparisons are made against the exact solution for an
infinite solid cylinder by Henry [29]. The same reference surface charge density I ¼ 1:39 is used for all the particles listed,
so the hollow particles have more total charge due to the extra charge on the inner surface. In all the simulations, we use
volume charge pattern to alleviate the effects of the numerical error in the applied field near the undulated surfaces; cv
is calculated correspondingly from the particular total charge on the microtubule. Also, the ratio of the electrical conductivity
is prescribed as rp=rf ¼ 0:001.
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Ed
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of rp=rf ¼ 0:001.

Table 2
Electrophoretic velocity and anisotropy: different particles with same surface charge density. Vpk refers to particle velocity with parallel orientation with respect
to the applied field, and Vp? refers to perpendicular orientation.

Vpk (m/s) Vp? (m/s) Anisotropy

Exact, Solid cyl, infinite 10.38e�5 8.936e�5 0.861
Solid cyl, infinite 9.860e�5 8.391e�5 0.851
Hollow cyl, infinite 10.09e�5 8.109e�5 0.804
Microtubule, infinite 11.35e�5 8.964e�5 0.790
Microtubule, finite L=a ¼ 4 8.132e�5 5.961e�5 0.731
Microtubule, finite L=a ¼ 8 8.784e�5 6.790e�5 0.773
Microtubule, experiment, infinite 10.36e�5 8.6e�5 0.83
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It is shown by Table 2 that the electrophoretic velocity of an infinite cylinder with transverse or parallel external field is
resolved with errors of 5.0% and 6.1%, respectively. A hollow cylinder has a larger parallel mobility than a solid cylinder,
which might come from the higher charge and hence larger electric force on the cylinder. In contrast, the transverse mobility
of a hollow cylinder is smaller than the solid one, which may result from the oppositely charged fluid confined inside the
cylinder. We also see that the mobilities of a microtubule are significantly larger than the ones for a hollow cylinder, which
is again due to the higher net charge and hence larger electric driving force on the microtubule. Both the anisotropy and the
individual mobilities of a microtubule are in close agreement with the experimental values reported in experiments of [27]
Fig. 16. Electrophoresis of a microtubule of length L=a ¼ 4 with either axial or perpendicular orientations: Velocity contour in the cross-section z ¼ 0, with an
external electric field of E1 ¼ ð0;0;4000Þ V=m (a) and E1 ¼ ð4000; 0;0Þ V=m (b).



Fig. 17. Electrophoresis of a microtubule of length L=a ¼ 4 with either axial or perpendicular orientations: Velocity contour in the axial plane x ¼ 0, with an
external electric field of E
and listed in the table here (5–10%), given all the uncertainties in both experimental and numerical set-ups. Furthermore, the
table indicates that by reducing the length of the microtubule to a small value L=a ¼ 4, the mobility and also the anisotropy
drops significantly. Note that a different computational domain is used for finite microtubules, i.e. ½�88;88� � ½�88;88��
½�165;165� with 10,816 nonuniform rectilinear elements.

Figs. 16 and 17 show the electrophoretic motion of a microtubule with a spanwise length L=a ¼ 4. It is indicated that com-
pared to the infinite microtubules, such a limited spanwise dimension leads to a significant decrease in the mobilities. How-
ever, the finite structures disturb the surrounding fluid to a greater extent, e.g. a reverse flow is present outside the
microtubule as shown in Fig. 16(a). Also, for the perpendicular orientation in Fig. 16(b), the non-uniformity of the inner fluid
velocity is alleviated; this is due to the fact that the fluid inside is not fully confined anymore because of the open-ends.
Fig. 17 further confirms these statements by showing a different angle of view, i.e. there exist large variations of the velocity
near the free ends, and the outer fluid is influenced greatly by the finite dimension effects.
5. Summary and discussion

In this paper, we have developed a fast modeling method for electrokinetic flows where particles with arbitrary electrical
conductivity are present. We modified the Poisson–Boltzmann (PB) and electric charge continuity equations based on a
smoothed profile technique, to account for the entire domain including the particles. These equations were solved using
the spectral element method in conjuction with the modified incompressible Navier–Stokes equations, to include the elec-
trokinetic forces.

We verified the method by benchmark problems of electroosmotic flows in straight channels and by electrophoresis of
charged cylinders. The modeling error of the coupled electrokinetic solver was quantified, and it showed a significant differ-
ence from the error behavior of the pure hydrodynamic solver. By excluding the error from the PB solution, we showed that
the modeling error is non-monotonic; the optimum time step comes from a balance between the thickness of the Stokes
diffusive layer and the one of the electrical diffuse layer, i.e. d ¼ 2:76

ffiffiffiffiffiffiffiffi
mdt
p

� kd. However, by solving the PB equation numer-
ically we obtain a ‘‘fortuitous” cancellation of errors, for both planar and curved surfaces studied, which allows us to use
large time steps and enhanced accuracy. We note, however, that in studying time-dependent flows a judicious balance be-
tween temporal error and SMP-modeling error should be pursued and this ultimately will determine the optimum time step
for accuracy.

As the direct boundary conditions at particle/solution interfaces are removed, the proposed method is advantageous for
simulating electrokinetic flows with moving complex-shaped particles which are charged. Simulation results for the electro-
phoresis of charged microtubules were presented for the first time and the simulated electrophoretic mobility and anisot-
ropy agreed with the experimental results.

We note that further improvements can be made to the proposed modeling method. Since the accuracy limitation comes
from the current continuity solver, a better approach can be used to solve for the ‘‘discontinuous” electric field, such as a
discontinuous Galerkin formulation or a spectral filtering method or an ENO-type differentiation. Another limitation is
due to the assumptions made in deriving the PB and current continuity equations. It is assumed that the charge distribution
is in an equilibrium state, i.e. ionic advection is negligible. A more accurate model would be the Nernst–Planck equation
[49,7] for ionic transport instead of the hypothesized Boltzmann distribution. A possible way to effectively solve the Pois-
son–Nernst–Planck equations would be to rewrite them to account for the entire domain by using a smooth approximation
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of the diffusitivity Di. However, since the transport processes of all the species are influenced by each other, the governing
equations are coupled together, which poses a great challenge to numerical modeling.
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